An approach for treating contact surfaces in Lagrangian cell-centered hydrodynamics

نویسندگان

  • Nathaniel R. Morgan
  • Mark A. Kenamond
  • Donald E. Burton
  • Theodore C. Carney
  • Daniel Ingraham
چکیده

A new method is presented for modeling contact surfaces in Lagrangian cell-centered hydrodynamics (CCH). The contact method solves a multi-directional Riemann-like problem at each penetrating or touching node along the contact surface. The velocity of a penetrating or touching node and the corresponding forces are explicitly calculated using the Riemann-like nodal solver. The contact method works with material strength and allows surfaces to impact, slide, and separate. Results are presented for several test problems involving both gases and materials with strength. The new contact surface approach extends the modeling capabilities of CCH. 2013 The Authors. Published by Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new method to introduce constraints in cell-centered Lagrangian schemes

We describe a new method to introduce constraints in cell-centered Lagrangian schemes in the framework of compressible hydrodynamics. In this paper we apply it to the modeling of contact and sliding on solid wall boundaries. We illustrate our method, which is based on the minimization of a specific objective function, by several basic problems.

متن کامل

Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics

We present cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and also for the one-dimensional Lagrangian hydrodynamics up to third-order. We also demonstrate that a proper choice of the numerical fluxes allows to enforce stability properties of our discretizations.

متن کامل

Presenting a Modified SPH Algorithm for Numerical Studies of Fluid-Structure Interaction Problems

A modified Smoothed Particle Hydrodynamics (SPH) method is proposed for fluid-structure interaction (FSI) problems especially, in cases which FSI is combined with solid-rigid contacts. In current work, the modification of the utilized SPH concerns on removing the artificial viscosities and the artificial stresses (which such terms are commonly used to eliminate the effects of tensile and numeri...

متن کامل

A one-mesh method for the cell-centered discretization of slide lines

A new method is described to handle slide lines in cell-centered Lagrangian schemes for the modeling of sliding problems between two fluids in the framework of compressible hydrodynamics. The method is an extension of the one proposed in the reference [1] and is conservative in momentum and total energy. Our method is based on the minimization of an objective function over a specific set that m...

متن کامل

3D staggered Lagrangian hydrodynamics scheme with cellcentered Riemann solverbased artificial viscosity

The aim of the present work is the 3D extension of a general formalism to derive a staggered discretization for Lagrangian hydrodynamics on unstructured grids. The classical compatible discretization is used; namely, momentum equation is discretized using the fundamental concept of subcell forces. Specific internal energy equation is obtained using total energy conservation. The subcell force i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 250  شماره 

صفحات  -

تاریخ انتشار 2013